Monday 2 October 2017

Exponential Glidande-Medelvärde Regression


Flytta genomsnittliga och exponentiella utjämningsmodeller Som ett första steg för att flytta bortom genomsnittliga modeller kan slumpmässiga gångmodeller, linjära trendmodeller, nonseasonala mönster och trender extrapoleras med hjälp av en rörlig genomsnitts - eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt (lokalt) medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden. Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-utan-drift-modellen. Samma strategi kan användas för att uppskatta och extrapolera en lokal trend. Ett rörligt medelvärde kallas ofta en quotsmoothedquot-version av den ursprungliga serien, eftersom kortsiktig medelvärde medför att utjämning av stötarna i originalserien. Genom att justera graden av utjämning (bredden på glidande medelvärdet) kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos medel - och slumpmässiga gångmodeller. Den enklaste typen av medelvärdesmodell är. Enkelt (lika viktat) Flyttande medelvärde: Prognosen för värdet på Y vid tiden t1 som görs vid tid t motsvarar det enkla medelvärdet av de senaste m-observationerna: (Här och på annat håll använder jag symbolen 8220Y-hat8221 för att stå för en prognos av tidsserien Y som gjordes så tidigt som möjligt enligt en given modell.) Detta medel är centrerat vid period-t (m1) 2 vilket innebär att uppskattningen av det lokala medelvärdet tenderar att ligga bakom det sanna värdet av det lokala medelvärdet med ca (m1) 2 perioder. Således säger vi att medelåldern för data i det enkla glidande medlet är (m1) 2 i förhållande till den period för vilken prognosen beräknas: det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data . Om du till exempel medger de senaste 5 värdena, kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m1 är den enkla glidande genomsnittsmodellen (SMA) motsvarar den slumpmässiga gångmodellen (utan tillväxt). Om m är väldigt stor (jämförbar med längden på uppskattningsperioden) motsvarar SMA-modellen den genomsnittliga modellen. Precis som med vilken parameter som helst av en prognosmodell, är det vanligt att justera värdet på k för att få den bästa kvotfoten till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar utgöra slumpmässiga fluktuationer runt ett långsamt varierande medelvärde. Först kan vi försöka passa på den med en slumpmässig promenadmodell, vilket motsvarar ett enkelt glidande medelvärde på 1 term: Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer man mycket av kvotenhetskvoten i data (de slumpmässiga fluktuationerna) samt quotsignalquot (den lokala medelvärdet). Om vi ​​istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser: Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i det här fallet. Medelåldern för data i denna prognos är 3 ((51) 2), så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. (Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare.) Notera att de långsiktiga prognoserna från SMA-modellen är en horisontell rak linje, precis som i slumpmässig promenad modell. Således antar SMA-modellen att det inte finns någon trend i data. Men medan prognoserna från den slumpmässiga promenadmodellen helt enkelt motsvarar det senast observerade värdet är prognoserna från SMA-modellen lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla glidande genomsnittet blir inte större eftersom prognostiseringshorisonten ökar. Det här är uppenbarligen inte korrekt Tyvärr finns det ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är dock inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre tid. Du kan till exempel konfigurera ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt etc. i det historiska dataprov. Därefter kan du beräkna felfunktionens avvikelser vid varje prognoshorisont och sedan konstruera konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar med lämplig standardavvikelse. Om vi ​​försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt: Medelåldern är nu 5 perioder (91) 2). Om vi ​​tar ett 19-årigt glidande medel ökar medeltiden till 10: Observera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-siktigt genomsnitt: Modell C, det 5-åriga glidande medlet, ger det lägsta värdet av RMSE med en liten marginal över 3 - term och 9-medeltal, och deras andra statistik är nästan identiska. Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer respons eller lite mer jämnhet i prognoserna. (Tillbaka till början av sidan.) Browns Simple Exponential Smoothing (exponentiellt vägd glidande medelvärde) Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer. Intuitivt bör tidigare data diskonteras på ett mer gradvis sätt - till exempel bör den senaste observationen få lite mer vikt än 2: a senast, och den 2: a senaste bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämningens (SES) - modellen åstadkommer detta. Låt 945 beteckna en quotsmoothing constantquot (ett tal mellan 0 och 1). Ett sätt att skriva modellen är att definiera en serie L som representerar den nuvarande nivån (dvs lokal medelvärde) för serien som uppskattad från data fram till idag. Värdet av L vid tiden t beräknas rekursivt från sitt eget tidigare värde som här: Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där 945 styr närheten av det interpolerade värdet till det senaste observation. Prognosen för nästa period är helt enkelt det nuvarande släta värdet: Likvärdigt kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner. I den första versionen är prognosen en interpolation mellan föregående prognos och tidigare observation: I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel av 945. Är felet gjort vid tid t. I den tredje versionen är prognosen ett exponentiellt vägt (dvs. rabatterat) glidande medelvärde med rabattfaktor 1-945: Interpolationsversionen av prognosformuläret är det enklaste att använda om du genomför modellen på ett kalkylblad: det passar in i en encell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet 945 lagras. Observera att om 945 1 motsvarar SES-modellen en slumpmässig gångmodell (utan tillväxt). Om 945 0 motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet. (Återgå till början av sidan.) Medelåldern för data i prognosen för enkel exponentiell utjämning är 1 945 i förhållande till den period som prognosen beräknas för. (Det här är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie.) Därför tenderar den enkla glidande medelprognosen att ligga bakom vändpunkter med cirka 1 945 perioder. Till exempel, när 945 0,5 är fördröjningen 2 perioder när 945 0,2 är fördröjningen 5 perioder när 945 0,1 är fördröjningen 10 perioder, och så vidare. För en given medelålder (dvs mängden fördröjning) är prognosen för enkel exponentiell utjämning (SES) något överlägsen SMA-prognosen (Simple Moving Average) eftersom den placerar relativt större vikt vid den senaste observationen, dvs. det är något mer quotresponsivequot för förändringar som inträffade under det senaste förflutna. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 945 0,2 båda en genomsnittlig ålder på 5 för data i sina prognoser, men SES-modellen lägger mer vikt på de sista 3 värdena än SMA-modellen och vid samtidigt som det inte helt 8220forget8221 om värden som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som kontinuerligt varierar, så att den lätt kan optimeras genom att använda en kvotsolverquot-algoritm för att minimera det genomsnittliga kvadratfelet. Det optimala värdet på 945 i SES-modellen för denna serie visar sig vara 0,2961, vilket visas här: Medelåldern för data i denna prognos är 10,2961 3,4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är en horisontell rak linje. som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt. Observera dock att de konfidensintervaller som beräknas av Statgraphics avviker nu på ett rimligt sätt, och att de är väsentligt smalare än konfidensintervallet för slumpmässig promenadmodell. SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell. så ger den statistiska teorin om ARIMA-modeller en bra grund för beräkning av konfidensintervaller för SES-modellen. I synnerhet är en SES-modell en ARIMA-modell med en icke-säsongsskillnad, en MA (1) term och ingen konstant term. annars känd som en quotARIMA (0,1,1) modell utan constantquot. MA (1) - koefficienten i ARIMA-modellen motsvarar kvantiteten 1-945 i SES-modellen. Om du till exempel passar en ARIMA-modell (0,1,1) utan konstant till serien som analyseras här, uppskattas den uppskattade MA (1) - koefficienten vara 0,7029, vilket är nästan exakt en minus 0,2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. För att göra detta, ange bara en ARIMA-modell med en icke-säsongsskillnad och en MA (1) term med en konstant, dvs en ARIMA (0,1,1) modell med konstant. De långsiktiga prognoserna kommer då att ha en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongsjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant långsiktig exponentiell trend till en enkel exponentiell utjämningsmodell (med eller utan säsongsjustering) genom att använda inflationsjusteringsalternativet i prognosproceduren. Den lämpliga quotinflationen (procentuell tillväxt) per period kan uppskattas som lutningskoefficienten i en linjär trendmodell som är anpassad till data i samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter . (Return to top of page.) Browns Linjär (dvs dubbel) Exponentiell utjämning SMA-modellerna och SES-modellerna antar att det inte finns någon trend av något slag i data (vilket vanligtvis är OK eller åtminstone inte för dåligt för 1- stegprognoser när data är relativt bullriga), och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en växande växthastighet eller ett cykliskt mönster som står klart ut mot bruset, och om det finns behov av att prognostisera mer än en period framåt, kan uppskattningen av en lokal trend också vara en fråga. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning (LES) - modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trendmodellen är Browns linjära exponentiella utjämningsmodell, som använder två olika slätmade serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centra. (En mer sofistikerad version av denna modell, Holt8217s, diskuteras nedan.) Den algebraiska formen av Brown8217s linjär exponentiell utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men likvärdiga former. Den här kvotens kvotstandardkvot uttrycks vanligtvis enligt följande: Låt S beteckna den singeljämnade serien som erhållits genom att använda enkel exponentiell utjämning till serie Y. Dvs, värdet av S vid period t ges av: (Minns att, under enkel exponentiell utjämning, detta skulle vara prognosen för Y vid period t1.) Låt sedan Squot beteckna den dubbelsidiga serien erhållen genom att använda enkel exponentiell utjämning (med samma 945) till serie S: Slutligen prognosen för Y tk. för vilken kgt1 som helst, ges av: Detta ger e 1 0 (det vill säga lura lite och låt den första prognosen motsvara den faktiska första observationen) och e 2 Y 2 8211 Y 1. varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden som formeln baserad på S och S om de senare startades med användning av S1S1Y1. Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Holt8217s linjär exponentiell utjämning Brown8217s LES-modell beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på de datamönster som den kan passa: nivån och trenden får inte variera till oberoende priser. Holt8217s LES-modell tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst, t som i Brown8217s modell, finns det en uppskattning L t på lokal nivå och en uppskattning T t av den lokala trenden. Här rekryteras de rekursivt från värdet av Y observerat vid tiden t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som applicerar exponentiell utjämning till dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L t82091 och T t-1. respektive prognosen för Y tshy som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1. När det verkliga värdet observeras beräknas den uppdaterade uppskattningen av nivån rekursivt genom interpolering mellan Y tshy och dess prognos L t-1 T t 1 med vikter av 945 och 1- 945. Förändringen i beräknad nivå, nämligen L t 8209 L t82091. kan tolkas som en bullrig mätning av trenden vid tiden t. Den uppdaterade uppskattningen av trenden beräknas sedan rekursivt genom interpolering mellan L t 8209 L t82091 och den tidigare uppskattningen av trenden T t-1. Användning av vikter av 946 och 1-946: Tolkningen av trendutjämningskonstanten 946 är analog med den för nivåutjämningskonstanten 945. Modeller med små värden av 946 förutsätter att trenden ändras endast mycket långsamt över tiden, medan modeller med större 946 antar att det förändras snabbare. En modell med en stor 946 tror att den avlägsna framtiden är väldigt osäker, eftersom fel i trendberäkning blir ganska viktiga vid prognoser mer än en period framåt. (Återgå till början av sidan.) Utjämningskonstanterna 945 och 946 kan uppskattas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 945 0.3048 och 946 0.008. Det mycket lilla värdet på 946 innebär att modellen antar mycket liten förändring i trenden från en period till nästa, så i grunden försöker denna modell att uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används för att uppskatta den lokala nivån i serien, är medelåldern för de data som används för att uppskatta den lokala trenden proportionell mot 1 946, men inte exakt lika med den . I det här fallet visar sig att vara 10.006 125. Detta är ett mycket exakt nummer eftersom precisionen av uppskattningen av 946 är verkligen 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så att denna modell är medeltal över ganska mycket historia för att uppskatta trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som beräknas i SEStrend-modellen. Det uppskattade värdet på 945 är också nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend, så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som ska beräkna en lokal trend. Om du 8220eyeball8221 ser den här tomten ser den ut som om den lokala trenden har vänt sig nedåt i slutet av serien. Vad har hänt Parametrarna i denna modell har uppskattats genom att minimera det kvadrerade felet i 1-stegs-prognoser, inte längre prognoser, i vilket fall trenden gör inte en stor skillnad. Om allt du tittar på är 1 steg framåt, ser du inte den större bilden av trender över (säg) 10 eller 20 perioder. För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den använder en kortare baslinje för trendberäkning. Om vi ​​till exempel väljer att ställa in 946 0,1, är genomsnittsåldern för de data som används för att uppskatta den lokala trenden 10 perioder, vilket innebär att vi medeltar trenden över de senaste 20 perioderna eller så. Here8217s hur prognosplotet ser ut om vi sätter 946 0,1 medan ni håller 945 0.3. Detta ser intuitivt rimligt ut för denna serie, men det är troligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad sägs om felstatistik Här är en modelljämförelse för de två modellerna ovan och tre SES-modeller. Det optimala värdet på 945. För SES-modellen är ungefär 0,3, men liknande resultat (med något mer eller mindre responsivitet) erhålls med 0,5 och 0,2. (A) Hål linjär exp. utjämning med alfa 0,3048 och beta 0,008 (B) Hål linjär exp. utjämning med alfa 0,3 och beta 0,1 (C) Enkel exponentiell utjämning med alfa 0,5 (D) Enkel exponentiell utjämning med alfa 0,3 (E) Enkel exponentiell utjämning med alfa 0,2 Deras statistik är nästan identisk, så vi kan verkligen göra valet på grundval av prognosfel i 1 steg före proverna. Vi måste falla tillbaka på andra överväganden. Om vi ​​starkt tror att det är vettigt att basera den nuvarande trendberäkningen på vad som hänt under de senaste 20 perioderna eller så kan vi göra ett ärende för LES-modellen med 945 0,3 och 946 0,1. Om vi ​​vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna vara enklare att förklara och skulle också ge fler mitten av vägtrafikprognoserna för de kommande 5 eller 10 perioderna. (Tillbaka till början av sidan.) Vilken typ av trend-extrapolation är bäst: Horisontell eller linjär Empiriska bevis tyder på att om uppgifterna redan har justerats (om det behövs) för inflationen, kan det vara osäkert att extrapolera kortfristiga trender mycket långt in i framtiden. Tendenser som uppenbaras idag kan sänkas i framtiden på grund av olika orsaker som produktförstörning, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Av denna anledning utför enkel exponentiell utjämning ofta bättre ur prov än vad som annars skulle kunna förväntas, trots sin kvotiv kvot horisontell trend extrapolering. Dämpade trendmodifieringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den demoniserade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA-modell (1,1,2). Det är möjligt att beräkna konfidensintervaller kring långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller. (Var försiktig: inte alla mjukvaror beräknar konfidensintervall för dessa modeller korrekt.) Bredden på konfidensintervallet beror på (i) modellens RMS-fel, (ii) utjämningstypen (enkel eller linjär) (iii) värdet (er) av utjämningskonstanten (erna) och (iv) antalet perioder framåt du prognoserar. I allmänhet sprids intervallet snabbare, eftersom 945 blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används. Detta ämne diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. (Återgå till början av sidan.) Linjär regressionsindikator Den linjära regressionsindikatorn används för trendidentifiering och trend som följer på liknande sätt som glidande medelvärden. Indikatorn bör inte förväxlas med linjära regressionslinjer som är raka linjer monterade på en serie datapunkter. Den linjära regressionsindikatorn avbildar slutpunkterna för en hel serie linjära regressionslinjer ritade på varandra följande dagar. Fördelen med den linjära regressionsindikatorn över ett normalt glidande medelvärde är att det har mindre fördröjning än det glidande medlet, som svarar snabbare på ändringar i riktning. Nackdelen är att den är mer benägen att piska sig. Den linjära regressionsindikatorn är endast lämplig för handel med starka trender. Signaler tas på liknande sätt som rörliga medelvärden. Använd riktningen för den linjära regressionsindikatorn för att mata in och avsluta handel med en längre siktindikator som ett filter. Gå länge om den linjära regressionsindikatorn dyker upp eller avslutar en kort handel. Gå kort (eller avsluta en lång handel) om den linjära regressionsindikatorn slocknar. En variant av ovanstående är att ange affärer när priset går över den linjära regressionsindikatorn, men slutar fortfarande när den linjära regressionsindikatorn slocknar. Mus över diagramtexter för att visa handelssignaler. Gå långt L när priset går över den 100-dagars linjära regressionsindikatorn medan 300-dygnet stiger Exit X när den 100-dagars linjära regressionsindikatorn slocknar. Gå lång igen vid L när priset går över 100-dagars Linear Regression Indicator Exit X när den 100-dagars linjära regressionsindikatorn slocknar. Gå lång L när priset korsar över 100-dagars linjär regressionsutgång X när 100-dagarsindikatorn slocknar. Gå lång L när 300-dagars linjär regressionsindikator dyker upp efter överkurs över priset 100-dagars indikatorutgång X när 300-dagars linjär regressionsindikator slocknar. Bearish divergensen på indikatorn varnar för en stor trendomvandling. Flyttmedelvärden Det rörliga genomsnittet beräknas genom att medföra prisvärden över det angivna intervallet Längd. 160 Notera att ingen intervall ges, alla värden är med avseende på aktuell visad tidsram för diagrammet. 160A-linjen som förbinder medelvärdena skapar en utjämningseffekt som kan hjälpa till att förutsäga trender eller avslöja andra viktiga mönster. 160Rörande medelvärdet kan vara förskjutet bakåt eller framåt i tid med hjälp av förskjutningsinställningen. Det adaptiva rörliga genomsnittet blir känsligare när priset rör sig i en viss riktning och blir mindre känslig för prisrörelsen när priset är flyktigt. Dubbel exponentiell (DEMA) DEMA består av ett exponentiellt rörligt medelvärde och ett dubbel exponentiellt rörligt medelvärde. Exponentiell Det exponentiella glidande medlet tilldelar större vikt till den senaste fältet och minskar sedan exponentiellt med varje stapel. Det reagerar snabbt på de senaste prisförändringarna. 160 Exponentiell glidande medelvärde. Hull-glidande medel använder kvadratroten av antalet staplar för att beräkna utjämningen. 160Det har en hög nivå av utjämning, men svarar också snabbt på prisändringar. 160 Hull glidande medelvärde. Linjär regression Linjär regression plottar väg för ändpunkten för en linjär regressionslinje tillbaka genom diagrammet. Det Modifierade Flyttande Medlet använder en sluttande faktor för att hjälpa den att justera med det ökande eller minskade handelspriset. Det enkla glidande medelvärdet beräknas genom att lägga till stängningspriserna för de tidigare staplarna (antalet barer är valda av dig) och dela upp det med antalet barer. 160Ettlig vikt ges till varje stapel. 160 Enkelt glidande medelvärde. Sine-Weighted Det Sine-Weighted Moving Average tar sin vikt från den första halvan av en Sine-vågcykel så att den största vikten ges till data i mitten. Smoothed Moving Average ger senaste priser samma vikt som historiska priser. Beräkningen använder all tillgänglig data. Det subtraherar gårdagarna Slät Flytta Genomsnittet från dagens pris lägger sedan till detta resultat till gårdagens släta rörande medelvärde. Tidsserie Tidsseriens rörliga medelvärde skapas med en linjär regressionsteknik. 160Det kartlägger sista punkten för en linjär regressionslinje baserat på antalet barer som används i studien. 160Dessa punkter är sedan anslutna för att bilda ett glidande medelvärde. 160160160 Tidsserie glidande medelvärde. Triangulär Triangulärt glidande medelvärde ger maximal vikt till staplarna i mitten av serien. 160Det är också medelvärde två gånger så det har större utjämning än andra glidande medelvärden. 160 Triangulärt glidande medelvärde. Det rörliga rörliga genomsnittet justerar vikten som tilldelas varje stapel baserat på volatiliteten under motsvarande stapel. Variabelt glidande medelvärde. VIDYA (Volatility Index Dynamic Average) glidande medel använder ett volatilitetsindex för viktning av varje stapel. 160 VIDYA glidande medelvärde. Det vägda glidande medelvärdet tilldelar större vikt till den senaste linjen och minskar därefter aritmetiskt med varje stapel, baserat på antalet staplar som valts för studien tills det når en vikt av noll. 160 Vägt rörligt medelvärde. Welles Wilder Smoothing Welles Wilder utjämning glidande medel svarar långsamt för prisändringar. 160 Welles Wilder utjämning glidande medelvärde. Inställningar Om du högerklickar på glidande medelvärdet och väljer Inställningar får du en av dialogrutorna som visas nedan. 160Alla de olika typerna av glidande medelvärden har samma inställningar förutom det adaptiva rörliga medelvärdet och VIDYA-rörande medelvärdet. 160Detta är där du anger längden (antal barer som ska användas), offset (används för att flytta hela glidande medelvärdet framåt eller bakåt i tiden), 160 och källan (öppen, hög, låg, nära). 160Den här dialogrutan kan du också välja färg och tjocklek på den glidande medellinjen. 160 Flytta genomsnittliga inställningar. Med inställningarna för det adaptiva rörliga genomsnittsvärdet kan du ange värdena för utjämning av snabb och långsam. Förinställningarna för VIDYA Moving Average är samma som ovan, med undantag för R2Scale-fältet. 160Detta hänvisar till den R-kvadrerade skalan som används vid den linjära regressionsberäkningen. 160 Flytta genomsnittliga tidsramar När du använder glidande medelvärden finns det tre tidsramar som vanligtvis är kända: kort sikt (dvs. 10), mellanliggande sikt (dvs 50) och lång sikt (dvs 200). 160The 10-period MA är den som flyttar närmast den faktiska prisrörelsen. 160The 50-peroid är näst närmast den faktiska prisrörelsen och 200-talet är den längst bort från prisrörelsen. 160 10-dagars, 50-dagars - och 200-dagars Enkla rörliga medelvärden på samma diagram. Förhandsgranskning genom utjämningstekniker Den här webbplatsen är en del av JavaScript E-labs lärande objekt för beslutsfattande. Övriga JavaScript i denna serie kategoriseras under olika tillämpningsområden i MENU-sektionen på den här sidan. En tidsserie är en följd av observationer som beställs i tid. Inhämtande i insamlingen av data som tagits över tiden är någon form av slumpmässig variation. Det finns metoder för att minska avbrytandet av effekten på grund av slumpmässig variation. Bredt använda tekniker är utjämning. Dessa tekniker, när de tillämpas korrekt, avslöjar tydligare de underliggande trenderna. Ange tidsserierna Row-wise i följd, från början till vänster och parametrarna, och klicka sedan på knappen Beräkna för att få fram en prognos för en period framåt. Blanka rutor ingår inte i beräkningarna men nollor är. När du matar in data för att flytta från cell till cell i datmatrisen använder du inte knappen Tab eller pilar in. Funktioner av tidsserier, som kan avslöjas genom att granska dess graf. med de prognostiserade värdena och restbeteendet, förutsatt prognosmodellering. Flyttande medelvärden: Flyttande medelvärden rankas bland de mest populära teknikerna för förbehandling av tidsserier. De används för att filtrera slumpmässigt vitt brus från data, för att göra tidsserierna mjukare eller till och med för att betona vissa informationskomponenter som ingår i tidsserierna. Exponentiell utjämning: Detta är ett mycket populärt schema för att producera en slät Time Series. Medan i rörliga medelvärden viktas de senaste observationerna, exponentiell utjämning tilldelar exponentiellt minskande vikter som observationen blir äldre. Med andra ord ges de senaste observationerna relativt större vikt vid prognosen än de äldre observationerna. Dubbel exponentiell utjämning är bättre vid hantering av trender. Trippel exponentiell utjämning är bättre vid hantering av paraboltrender. Ett exponentiellt vägat glidande medelvärde med en utjämningskonstant a. motsvarar ungefär ett enkelt rörligt medelvärde av längd (dvs period) n, där a och n är relaterade till: a 2 (n1) ORn (2-a) a. Således skulle exempelvis ett exponentiellt vägt glidmedel med en utjämningskonstant lika med 0,1 motsvara ungefär ett 19 dagars glidande medelvärde. Och ett 40-dagars enkelt rörligt medelvärde skulle motsvara ungefär ett exponentiellt vägt rörligt medelvärde med en utjämningskonstant lika med 0,04878. Håller linjär exponentiell utjämning: Antag att tidsserierna är säsongsbetonade men visar visningstendens. Holts metod beräknar både nuvarande nivå och nuvarande trend. Observera att det enkla glidande medlet är ett speciellt fall av exponentiell utjämning genom att ställa in perioden för glidande medelvärde till heltalet av (2-alfa) alfa. För de flesta företagsdata är en Alpha-parameter som är mindre än 0,40 ofta effektiv. Man kan emellertid utföra en nätverkssökning av parameternummet, med 0,1 till 0,9, med steg om 0,1. Då har den bästa alfas det minsta genomsnittliga absoluta felet (MA-fel). Hur man jämför flera utjämningsmetoder: Även om det finns numeriska indikatorer för bedömning av prognosteknikens noggrannhet, är det mest använda sättet att använda en visuell jämförelse av flera prognoser för att bedöma deras noggrannhet och välja mellan olika prognosmetoder. I detta tillvägagångssätt måste man plotta (med användning av exempelvis Excel) på samma graf de ursprungliga värdena för en tidsserievariabel och de förutspådda värdena från flera olika prognosmetoder, vilket underlättar en visuell jämförelse. Du kanske gillar att använda tidigare prognoser med utjämningstekniker JavaScript för att få de senaste prognosvärdena baserade på utjämningstekniker som endast använder en parameter. Holt - och Winters-metoderna använder sig av två respektive tre parametrar, därför är det inte en lätt uppgift att välja de optimala eller till och med nära optimala värden genom försök och fel för parametrarna. Den enda exponentiella utjämningen betonar det korta perspektivet som ställer nivån till den sista observationen och baseras på förutsättningen att det inte finns någon trend. Den linjära regressionen, som passar en minsta kvadrera linje till historiska data (eller transformerade historiska data), representerar det långa intervallet, vilket är konditionerat för den grundläggande trenden. Hålen linjär exponentiell utjämning fångar information om den senaste trenden. Parametrarna i Holts-modellen är nivåparametrar som bör minskas när datamängden är stor, och trenderparametern bör ökas om den senaste trendriktningen stöds av orsakssambandsfaktorerna. Kortsiktiga prognoser: Observera att varje JavaScript på den här sidan ger en enstegs prognos. För att få en tvåstegs prognos. Lägg helt enkelt till det prognostiserade värdet till slutet av din tidsseriedata och klicka sedan på samma Calculate-knapp. Du kan upprepa denna process några gånger för att få de nödvändiga kortsiktiga prognoserna.

No comments:

Post a Comment